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HPC Trend

» Increase number of 
processors

» Decrease MTTF
» Dynamic Environment

» Parallel Runtime Environment
» Extension of OS services for message passing 

library or application development
» SCALABLE and FAULT-TOLERANT
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Parallel Runtime Environments

» MPI runtime environments
» Start / terminate jobs
» Transfer signals (e.g. Ctrl-C)
» Redirect STDIN, collect stdout / stderr
» Collect exit status
» Monitoring job status
» (Optional) Interface with debugger, scheduler etc.

» Communication Protocol
» Handle multiple types of message transmissions

» Broadcast, Multicast, Unicast

» SCALABLE and FAULT-TOLERANT
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MPI Runtime Environments

» MPICH2 - MPD (Multi-Purpose Daemon)
» Ring or Tree topology

» Open MPI – Open RTE
» Linear

» LAM/MPI – LAM
» Linear

» FT-MPI – HARNESS
» Linear 
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Scalable and Fault-Tolerant Issues

» Structured peer-to-peer networking
» Based on distributed hash tables

» CAN, Chord, Pastry, Tapestry

» Focus on resource discovery (Unicast)

» Sensor or large scale ad-hoc networking
» Based on gossiping (epidemic algorithm)
» Focus on information aggregation.
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Scalable and Fault-Tolerant Protocol

» Based on k-ary sibling tree
» K is number of fan-out (k ≥ 2)
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RING: Secondary path 
when the tree is damaged
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Scalable and Fault-Tolerant Protocol

» Example : survives a failure
» A broadcast message is encapsulated in a 

multicast message sent from parent to children of 
a dead node.

Introduction

Background

Design

Verification

Results

Conclusion Broadcast

Multicast/Unicast



9/23/2006 2:19 AM 8

Scalable and Fault-Tolerant Protocol

» Low storage cost
» Each node needs to know 

» the contact information of at most k+3 neighbors
» State of the link to its neighbors
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Scalable and Fault-Tolerant Protocol

» Protocol Specification
» Service Specification
» Environment Assumption
» Protocol Vocabulary
» Message Format
» Procedure Rules
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Protocol Specification

» Service Specification
» Deliver broadcast, multicast, unicast
» Normal circumstance

» Uses the k-ary tree to send messages

» Failure cases: 
» Uses the neighbor to reroute messages

» Best effort routing
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Protocol Specification

» Environment Assumption
» Failures

» Assumes Fail-stop (rather than Byzantine)
» At least one neighbor of each node should be alive

» Unless allow each node to contact a directory service

» Transmission channel
» Can detect and recover from transmission error

» E.g. TCP, Reliable UDP

» Consequence: never lose a message
» Unless message is destroyed with a node before being 

pass on
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Protocol Specification

» Protocol Vocabulary
» Hello – Initialize messages (construct k-ary tree)
» Mcast – Multicast messages (including Unicast)
» Bcast – Broadcast messages

» Message Format
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Protocol Specification

» Procedure Rules:
» Initialization

» Register itself to the directory service
» Get its logical ID 
» Send hello to Parent, Left 
» (and to Right if the right most in each level)

» Routing (best effort)
» Bcast: send to all of its children 

» If a child died: encapsulate in Mcast and reroute to its 
grand children

» Mcast: send to a valid neighbor (highest priority)
» Otherwise backtrack to sender

» ETC…
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Protocol Verification

» SPIN verification (and simulation) tool
» Model checker using automata-theoretical.
» Deadlocks, non-progress cycle, non-reachable 

state, etc.
» Provide counterexample in error cases.
» PROMELA (Process Meta Language)
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Protocol Verification

» Specifying the Protocol in PROMELA
» Model broadcast with exclusive channels
» Failures is simulated with non-deterministic 

selection (‘if’ selection construct)
» Speedup with ‘atomic’ construct
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Protocol Verification

» Verification Results
» No deadlock, livelock, invalid end state
» No unreachable codes and assertion violation

Introduction

Background

Design

Verification

Results

Conclusion

“I am SPIN and I approve this protocol”
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Experimental Results

» Routing Algorithms
» 1) Basic

» Fixed first hop based on static topology
» Rule based method to estimate cost
» Known locally failed links
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Conclusion if my level = destination level then
Send to left/right

else if my level > destination level then
Send to my parent

else
if my child is an ancestor of destination then

Send to the child
else

Send to left/right who is closer to 
an ancestor of the destination in my level
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Experimental Results

Destination Level above Sender Level Destination Level = Sender Level

D

S S D

D

S

Destination Level below Sender Level

Case 1

S

D

Case 2

» Basic routing examples
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Experimental Results

» Routing Algorithms
» 2) Variant (of 1)

» Based on ordering of current possible hops to 
shorten distance 

» (i.e. allows to go in a direction that does not toward 
destination)
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Experimental Results

» Routing Algorithms
» 3) Breadth first search

» Graph-coloring which explore only alive nodes 
» Use knowledge of Previously detected dead nodes

» Note: more accurate, but time consumption
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Experimental Results
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Experimental Results
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Conclusion and Future Work

» Scalable and Fault-Tolerant Protocol
» Designed for parallel runtime environments
» Formally proven to work (normal and failure)

» Future Work
» Protocol aware underlying network topology

» Add a function cost on each path

» Faster and more accurate re-routing algorithm
» Basic message distribution of Harness/Open RTE 

ala. FT-MPI/Open MPI

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 24

Please don’t forget 
the excursion at 4 PM ☺
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Thank You / Danke schön

For more information:
angskun@cs.utk.edu
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