
Scalable Fault Tolerant Protocol 
for Parallel Runtime Environments
Thara Angskun, Graham E. Fagg, George Bosilca, 

Jelena Pjesivac-Grbovic, and Jack J. Dongarra

Euro PVM/MPI 2006
(09/19/06)



9/23/2006 2:19 AM 2

HPC Trend

» Increase number of 
processors

» Decrease MTTF
» Dynamic Environment

» Parallel Runtime Environment
» Extension of OS services for message passing 

library or application development
» SCALABLE and FAULT-TOLERANT

Introduction

Background

Design

Verification

Results

Conclusion

Processor Sum



9/23/2006 2:19 AM 3

Parallel Runtime Environments

» MPI runtime environments
» Start / terminate jobs
» Transfer signals (e.g. Ctrl-C)
» Redirect STDIN, collect stdout / stderr
» Collect exit status
» Monitoring job status
» (Optional) Interface with debugger, scheduler etc.

» Communication Protocol
» Handle multiple types of message transmissions

» Broadcast, Multicast, Unicast

» SCALABLE and FAULT-TOLERANT

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 4

MPI Runtime Environments

» MPICH2 - MPD (Multi-Purpose Daemon)
» Ring or Tree topology

» Open MPI – Open RTE
» Linear

» LAM/MPI – LAM
» Linear

» FT-MPI – HARNESS
» Linear 

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 5

Scalable and Fault-Tolerant Issues

» Structured peer-to-peer networking
» Based on distributed hash tables

» CAN, Chord, Pastry, Tapestry

» Focus on resource discovery (Unicast)

» Sensor or large scale ad-hoc networking
» Based on gossiping (epidemic algorithm)
» Focus on information aggregation.

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 6

Scalable and Fault-Tolerant Protocol

» Based on k-ary sibling tree
» K is number of fan-out (k ≥ 2)

Introduction

Background

Design

Verification

Results

Conclusion

TREE: Scalable for 
broadcast and multicast

RING: Secondary path 
when the tree is damaged



9/23/2006 2:19 AM 7

Scalable and Fault-Tolerant Protocol

» Example : survives a failure
» A broadcast message is encapsulated in a 

multicast message sent from parent to children of 
a dead node.

Introduction

Background

Design

Verification

Results

Conclusion Broadcast

Multicast/Unicast



9/23/2006 2:19 AM 8

Scalable and Fault-Tolerant Protocol

» Low storage cost
» Each node needs to know 

» the contact information of at most k+3 neighbors
» State of the link to its neighbors

Introduction

Background

Design

Verification

Results

Conclusion

Parent

RightLeft

K-Children



9/23/2006 2:19 AM 9

Scalable and Fault-Tolerant Protocol

» Protocol Specification
» Service Specification
» Environment Assumption
» Protocol Vocabulary
» Message Format
» Procedure Rules

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 10

Protocol Specification

» Service Specification
» Deliver broadcast, multicast, unicast
» Normal circumstance

» Uses the k-ary tree to send messages

» Failure cases: 
» Uses the neighbor to reroute messages

» Best effort routing

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 11

Protocol Specification

» Environment Assumption
» Failures

» Assumes Fail-stop (rather than Byzantine)
» At least one neighbor of each node should be alive

» Unless allow each node to contact a directory service

» Transmission channel
» Can detect and recover from transmission error

» E.g. TCP, Reliable UDP

» Consequence: never lose a message
» Unless message is destroyed with a node before being 

pass on

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 12

Protocol Specification

» Protocol Vocabulary
» Hello – Initialize messages (construct k-ary tree)
» Mcast – Multicast messages (including Unicast)
» Bcast – Broadcast messages

» Message Format

Introduction

Background

Design

Verification

Results

Conclusion

prevents message loop



9/23/2006 2:19 AM 13

Protocol Specification

» Procedure Rules:
» Initialization

» Register itself to the directory service
» Get its logical ID 
» Send hello to Parent, Left 
» (and to Right if the right most in each level)

» Routing (best effort)
» Bcast: send to all of its children 

» If a child died: encapsulate in Mcast and reroute to its 
grand children

» Mcast: send to a valid neighbor (highest priority)
» Otherwise backtrack to sender

» ETC…

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 14

Protocol Verification

» SPIN verification (and simulation) tool
» Model checker using automata-theoretical.
» Deadlocks, non-progress cycle, non-reachable 

state, etc.
» Provide counterexample in error cases.
» PROMELA (Process Meta Language)

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 15

Protocol Verification

» Specifying the Protocol in PROMELA
» Model broadcast with exclusive channels
» Failures is simulated with non-deterministic 

selection (‘if’ selection construct)
» Speedup with ‘atomic’ construct

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 16

Protocol Verification

» Verification Results
» No deadlock, livelock, invalid end state
» No unreachable codes and assertion violation

Introduction

Background

Design

Verification

Results

Conclusion

“I am SPIN and I approve this protocol”



9/23/2006 2:19 AM 17

Experimental Results

» Routing Algorithms
» 1) Basic

» Fixed first hop based on static topology
» Rule based method to estimate cost
» Known locally failed links

Introduction

Background

Design

Verification

Results

Conclusion if my level = destination level then
Send to left/right

else if my level > destination level then
Send to my parent

else
if my child is an ancestor of destination then

Send to the child
else

Send to left/right who is closer to 
an ancestor of the destination in my level



9/23/2006 2:19 AM 18

Experimental Results

Destination Level above Sender Level Destination Level = Sender Level

D

S S D

D

S

Destination Level below Sender Level

Case 1

S

D

Case 2

» Basic routing examples



9/23/2006 2:19 AM 19

Experimental Results

» Routing Algorithms
» 2) Variant (of 1)

» Based on ordering of current possible hops to 
shorten distance 

» (i.e. allows to go in a direction that does not toward 
destination)

Introduction

Background

Design

Verification

Results

Conclusion

S D

Basic

Variant



9/23/2006 2:19 AM 20

Experimental Results

» Routing Algorithms
» 3) Breadth first search

» Graph-coloring which explore only alive nodes 
» Use knowledge of Previously detected dead nodes

» Note: more accurate, but time consumption

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 21

Experimental Results

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 22

Experimental Results

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 23

Conclusion and Future Work

» Scalable and Fault-Tolerant Protocol
» Designed for parallel runtime environments
» Formally proven to work (normal and failure)

» Future Work
» Protocol aware underlying network topology

» Add a function cost on each path

» Faster and more accurate re-routing algorithm
» Basic message distribution of Harness/Open RTE 

ala. FT-MPI/Open MPI

Introduction

Background

Design

Verification

Results

Conclusion



9/23/2006 2:19 AM 24

Please don’t forget 
the excursion at 4 PM ☺



9/23/2006 2:19 AM 25

Thank You / Danke schön

For more information:
angskun@cs.utk.edu


	Scalable Fault Tolerant Protocol �for Parallel Runtime Environments
	HPC Trend
	Parallel Runtime Environments
	MPI Runtime Environments
	Scalable and Fault-Tolerant Issues
	Scalable and Fault-Tolerant Protocol
	Scalable and Fault-Tolerant Protocol
	Scalable and Fault-Tolerant Protocol
	Scalable and Fault-Tolerant Protocol
	Protocol Specification
	Protocol Specification
	Protocol Specification
	Protocol Specification
	Protocol Verification
	Protocol Verification
	Protocol Verification
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Conclusion and Future Work

