
Can MPI Be Used for Persistent
Services?

Rob Latham (presenting)

Robert Ross, Rajeev Thakur

Argonne National Laboratory

{robl,rross,thakur}@mcs.anl.gov

2

Challenges: What Makes System Services so Hard?

�System services provide long-running resources to applications

– resource manager, job scheduler, file system

�Computational resources growing larger

�Software complexity increasing

�Application guys solved this

– Gaussian, FFTW, GROMACS, pNetCDF.

� Language guys solved this

�Faster development -> more time for research:

�Consider specific example of PVFS

3

Case study: PVFS

� Communication performed over existing cluster
network

– TCP/IP, InfiniBand, Myrinet

� Servers store data in local file systems (e.g.
ext3, XFS)

– Local files store PVFS file stripes

– Berkeley DB currently used for metadata
(rather than files)

� Mixed kernel-space, user-space implementation

– VFS module in kernel with user-space
helper process

– User-space servers, interface for kernel
bypass

� Designed for hundreds of servers, tens of
thousands of clients

C C C C C

IOS IOS

Comm. Network

IOS IOS

RAID RAIDRAID RAID

PVFS PVFS PVFS PVFS PVFS

PVFS configured with redundancy

4

PVFS Challenges

� Long development:

– 5 years for recent redesign

– Relatively small group of developers, but time typical for others (comparable
with Luster, GPFS)

� Tricky code

– Coordinating large numbers of processes (clients/servers, data/metadata)

– Coordinating network and disk operations

� File system bugs particularly unpopular, unexpected

5

MPI Benefits

� Heterogenous communication

� Portable source

� Well-defined features and interfaces to those features

� Active research community

� Implementations likely to contain optimizations

� Debugged

– Or at least, someone else’s problem

6

Service Discovery: Current

� Clients need to know which machines host what resources

� Configuration items: one per service and one per client

� Change in system (planned, unplanned, or automated): need new config
files

� Admins have tools to keep all in sync

– But we’re looking for a standard way to achieve this on all platforms

– Ease of setup a big deal for PVFS end users

7

Service Discovery with MPI

� Utilize name publishing interface

– Servers start up, call MPI_PUBLISH_NAME

– Clients call MPI_LOOKUP_NAME

– well-known service name

� Offload configuration to MPI implementation

– MPI is likely already available

� Does demand quite a lot from interface

– Standard lets implementations decide scope of key/value pairs

8

Portability in PVFS

� System software particularly tied to underlying hardware

� Lots of different interconnects in HPC systems

– TCP emulation usually available

• myri0, IPoIB

– Write an abstraction package

• Portals, BMI

– What about new interconnects?

• Vendor buy-in or do it yourself

� Heterogeneity

– We wrote our own request processor

� Operating systems

9

Portability with MPI

� Let MPI be the network abstraction layer

– MPI_COMM_ACCEPT instead of interconnect-specific method

– Or MPI_COMM_JOIN for bootstrapping over ubiquitous TCP

� Vendor buy-in: done (why are you in Bonn again?)

– New interconnects and protocols get MPI implementations quickly: if
not vendors then eager grad students

� MPI standard allows for heterogeneity

10

Collective and Aggregate operations in PVFS

� Certain PVFS API routines require several
steps:

– Create: datafile and metadata entries on
servers

– Remove: same, but reversed

– Stat: needs partial size information from
each server

� Call one function, but multiple messages on
the network.

...

Directory Metafile Datafiles

11

Aggregate and Collective operations with MPI

� Server-to-server communication

– One all-encompassing communicator

– Manage a collection of
intercommunicators

� Single message from client

– Could be sent to any server

� Servers sort out what has to happen

� Further optimization: efficient collectives

– Runtime efficiency of O(log n) instead
of O(n) to send n messages

– Get this for free from many
implementations

� Being able to pre-post non-blocking
collectives would be helpful here

...

Directory Metafile Datafiles

12

Challenges

� Custom MPI error handlers

� Fault tolerance

– MPI faults

– Hardware/software faults (everything else)

• MPI can help here (distributed checksum)

� Can applications be made tolerant of failures?

– PVFS servers and clients can be restarted w/o other nodes caring

– How do we get the benefit of collective communication without
introducing too much state?

13

Today’s Implementations

� Clearly, some work to be done

NoNoNoMPI datatype
processing
supports
heterogeneous
architectures

NoNoNoCONNECT
ACCEPT works
under singeton
MPI_INIT

NoNoNoPublished name
appears to other
singleton processes

BGL MPI V1R1M1OpenMPI-1.0.1MPICH2-1.0.3Feature

14

Alternate Approaches

� PVM:

– heterogeneity, dynamic process management:

� CORBA:

– not as widely deployed as other options

� Shorter answer

– Don’t let me stop you from implementing something on top of other
libraries

15

Next Steps

� Prototype PVFS in MPI

� Prototype MPI extensions

� Evangelize benefits to MPI implementers

� Come up with satisfying answers to failure modes

16

The End. Questions?

� Vielen Dank

