

MPI/CTP: A Reconfigurable MPI for HPC Applications

Manjunath Gorentla Venkata, Patrick Bridges

Scalable Systems Lab University of New Mexico

Static configuration of protocol is not enough

Static configuration of communication protocol cannot optimize service in all cases

- Varying static protocol demands
 - HPC applications have diverse communication requirements
 - HPC machines have variety of network interface capabilities
- Dynamic communication characteristics

Solution: MPI/CTP - A reconfigurable implementation of MPI implementation A fine grained reconfigurable protocol driven by application and hardware specific protocol optimizations

MPI/CTP - Implementation of MPI

MPI/CTP features

- Supports various granularities of configuration
 - Fine grained functional properties and protocol behavior
 - Coarse grained selecting network interfaces for message transfer during component start time.
- Supports all types(sync, async,buffered) of point-to-point operations

MPI/CTP - Birds eye view of design

- MPI/CTP built using Cactus framework and CTP
- MPI functionality implemented as microprotocols
 - Example microprotocols MPI message transfer, Demultiplexing, Reliability, Ordering, Congestion Control
- Events and event handlers

Relevant design details

MPI layer to match semantics of Cactus and MPI applications

MPI/CTP - Relevant design details

MPI/CTP matching/demultiplexing

MPI/CTP - Relevant design details

Message transfer protocols

MPI/CTP - Relevant design details

MPI related Events

MPI/CTP - Relevant design details

MPI/CTP Message headers

MPI/CTP - Relevant design details

Compatible with CTP functions

- Reliability
- Congestion Control
- Flow control

Reconfiguration opportunities

- Network-based
 - Reliability protocols
- Application-based
 - Message list management
 - Message transfer protocols
- Collectives

Case study: Adapting protocol behavior

- MPI/CTP message transfer microprotocols Eager Rendezvous, Rendezvous, Eager
- Preposted receives percentage dictate message send protocols
- Per-message, per-peer protocol reconfiguration

Experiment setup

- Hardware 2.3 Ghz Pentium III Xeon, Myrinet NIC with Lanai 7 processor
- Software Linux Kernel version 2.4.2, GM 2.1.1, MPICH 1.2.6, OpenMPI 1.0.2
- Benchmark derived from SNL benchmarks
 - Measure effective throughput
 - Vary percent of receives preposted

Selecting protocol dynamically provides more bandwidth

Overhead in current prototype

Related Work

	MPI/CTP
Open-MPI	
Coarse grained reconfiguration MPICH	Fine grained
Compile time reconfiguration H-CTP	Run time
Designed for Grid systems	HPC systems

Conclusion

- MPI/CTP recovers lost performance
 - Flexibility to provide more bandwidth to application

Contributions

- Protocol architecture for application and hardware specific protocol reconfiguration in MPI
- Prototype MPI implementation supporting reconfiguration at compile time and runtime

Future Work

- Support for zero-copy in MPI/CTP
- Demonstrate advantages of hardware specific protocol reconfiguration in MPI
- Collective and single sided MPI operations reconfigurable to application requirements.

Thanks

Acknowledgments

- UNM Prof.Patrick Bridges, Prof. Barney Maccabe
- SNL- Ron Brightwell, Rolf Riesen
- SSL members
- DOE Office of Science grant DE-FG02-05ER25662
- Sandia University Research Program contract number 190576